
Programming Manual

H
ig

hP
rin

t

HighPrint Driver Software
Version 1.1

Questions and suggestions

 September 2005

Do you have ...

... any questions or suggestions regarding ... any technical questions or problems?
this manual?

Please note the order number or the date Please refer to the Wincor Nixdorf
of issue of this manual and refer it to: Customer Care Center:

address: E-mail: WNCCC.contact@wincor-nixdorf.com
Wincor Nixdorf International GmbH
Handbuchredaktion BD P5
33094 Paderborn
Germany

Fax: +49 (0) 5251 693 - 4368

mailto:WNCCC.contact@wincor-nixdorf.com

HighPrint Driver Software

Version 1.1

Edition September 2005

Copyright © Information and trademarks

 September 2005

© Wincor Nixdorf International GmbH 2005

All rights, including rights of translation and
rights of reproduction by reprinting,
copying or similar methods, even of parts,
are reserved.
Any violations give rise to a claim for
damages.

All rights, including rights created by patent
grants or registration of a utility model or
design, are reserved. Delivery subject to
availability; right of technical modifications
reserved.

All names of hardware and software
products mentioned in this manual are
trade names and/or trademarks of their
respective manufacturers.

September 2005

Contents

Introduction ..1

Installation ..3
Installation with HighPrint 4915xe CD ...3
Unattended Installation ..4

Steps of the Unattended Setup...5
Exit Code ..5
Log File ...6
INI File...7

Installation with Add Printer Wizard ...11

Deinstallation ...13

Configuration ...15

Driver Specifics..17
Paper Forms ..17

Standard Forms ..17
Driver-Defined Forms ...18
User-Defined Forms ...18
Printable Area ...18

Paper Source ...19
Driver Options...19
Automatically Select ...19

Fonts ..20
Device Fonts ...20
Notes on Code Pages...21

Paper Quality ...21

Device Handler Specifics ..23

Software Development Kit ..25
Software Interface..26
PrtOpen..27
PrtClose ...28
PrtCIaim ...29
PrtRelease ...31

 September 2005

PrtWrite ... 32
PrtRead ... 34
Return Codes .. 39
Using the Device Handler from Visual Basic .. 41
Localization of the User Interface ... 43

Sample Application... 45

Logging and Trace.. 47

Abbreviations .. 49

Literature.. 51

September 2005 1

Introduction
The HighPrint Driver Software supports printers of type HighPrint 4905 and HighPrint
4915 with serial, parallel and USB interface. It can be used with Windows 2000 and
Windows XP.

The driver software combines two different ways of printing. On the one hand it is
possible to print via the standard Windows printer interface provided by the GDI. In
particular it is possible to use standard applications like Word, Acrobat Reader, and
Internet Explorer. So the corresponding file formats (doc, pdf, html) can be printed without
any problems. For this the HighPrint Driver Software includes all modules required by the
Windows spool system: A GDI driver, a so-called language monitor for bi-directional
communication, and an INF file for installation.

On the other hand it is possible to develop applications that directly talk to the printer.
This is in general necessary for special applications that have to use functions of the
printer that are not supported by the Windows GDI. An example is a passbook application
which handles the passbook’s magnetic stripe.

For such applications a special device handler called HPRDH.DLL is provided by the
HighPrint Driver Software. Its interface is described in this document. By using this
interface an application gains complete control of the printer.

A description of the GDI interface is not necessary here. For this we refer you to the
Windows documentation.

So in summary the HighPrint Driver Software contains

• standard driver(s) for Windows and

• a device handler for special applications.

2 September 2005

September 2005 3

Installation
The HighPrint Driver Software can be installed on Windows 2000 and Windows XP. This
is possible using one of various installation procedures, which are described in the
following chapters. All these installation procedures require you to have administrator
rights.

Installation with HighPrint 4915xe CD

For driver installation it is recommended to use the product CD supplied with the printer.
This process will install the complete HighPrint driver software including device handler.

For USB devices we also recommend to run the installation before connecting the printer.

Start by inserting the product CD. Should the user interface fail to start automatically, start
the HighPrint4915xe application in the CD’s root directory.

Click on "Install printer driver", then follow the installation program prompts.

If you want to run the HighPrint on a COM or LPT channel, then the installation ends with
the setup of an appropriate printer object in the printer folder. This last step is omitted if
the device is to be run on USB. In this case the printer object is automatically set up by
Windows as soon as the printer is connected.

Unattended Installation Installation

4 September 2005

Unattended Installation

This chapter is aimed at system integrators, administrators and other IT professionals
whose task is to install the HighPrint driver software on one or more systems. It is often
helpful to be able to run an installation program that can execute completely unattended.

For exactly this situation you will find a program named Setup.exe on the HighPrint CD.
The program takes the settings needed for the installation procedure from a control file in
(text-based) INI format. This is where the settings are to be defined that otherwise, in
attended mode, the user selects in a dialog with the installation program.

Please adapt this control file to your installation procedure and then pass it to the
program with the appropriate call parameter. At this point it is also possible to specify a
log file which instructs the program to log the installation procedure.

If the printer is to be run on a COM or LPT channel, the installation ends by setting up an
appropriate printer object in the printer folder. This last step is omitted if the device is to
be run on USB. In this case the printer object is automatically set up by Windows as soon
as the printer is connected.

Syntax: setup.exe <inifile> [<logfile>]

<inifile> Path and name of the INI file. If the path of the ini file is not indicated, the
path of the application file (setup.exe) is used.

<logfile> Path and name of the log file (optional; if not specified no log file is
written). If the path of the log file is not specified then the path of the INI
file parameter is used.

Examples:
setup.exe highprint.ini

setup.exe "c:\program\highprint.ini" "c:\program\logs\highprint.log"

Please note: For installing the printer driver software you need administration rights on your
machine.

Installation Unattended Installation

September 2005 5

Steps of the Unattended Setup

The installation process depends on the INI file and the command-line parameters but
can be summarized as follows:

• Running setup.exe

• Create log file

• Process INI file:

• Identify source directory for printer files and name of INF file
• Copy DEVICE_HANDLER_FILES (e.g. HPRDH.dll) from source to destination

directory
• Copy DRIVER_FILES (e.g. Hprw2k.inf, Hprw2k.cat) from source directory to

destination directory
• Set INF file for installation process to the local copy (target directory)

• Driver installation process using the specified INF file
(COM/LPT: Setup adds the printer to the "Printers and faxes folder"
USB: Setup prepares the driver for plug&play mechanism)

• Show installation status (e.g. Printer driver successfully installed)

• End of installation

For details see the INI and LOG files.

Exit Code

If the installation was successfully completed you will get the message "Printer driver
successfully installed." from the log file and an exit code (also named error code) equal to
0.

If the setup program exits prematurely you will receive an exit code different from 0. The
setup also returns an error message that describes the failing operation. The exit codes
correspond to the system error codes from the Microsoft operating system but the
detailed error messages are application-specific.

Please note: If the installation fails the target files will not be deleted and registry keys will
not be removed or reset.

For a complete list of error codes provided by the operating system, see System Error
Codes from the Microsoft website.

Unattended Installation Installation

6 September 2005

Log File

A log file typically consists of a list of events in chronological order. This file can be
opened using any text editor (e.g. Notepad).

In order to verify that the printer has been installed properly have a look at the last line but
one.

If this line contains "Printer driver successfully installed." the installation has
completed without errors.

The log file will indicate "Installation not completed. Printer driver not installed." after
any error during the installation process. In this case you need to find the problem and
correct it. It requires no detective work to find the problem, simply go back line by line and
evaluate the messages starting with "ERROR:"

Example:

Log-file Description

[***Start unattended printer driver
installation 13.07.2005
16:29:17***]

Start tag with date/time information. The
following entry only contains a timestamp.

... ...

[16:29:17] Processing INI-file
D:\uasetup\param2.ini

The operation that caused the error.

[16:29:17] ERROR: Bad INI-file.
Parameter INF_FILE not
found or empty.

Detailed description from setup.exe of the
error.

[16:29:17] ERROR: Program exit code
87 (HEX 00000057): One of
the parameters was
invalid.

Exit code and operating system information
for this exit code.

[16:29:17] Installation not
completed. Printer driver
not installed.

This line indicates a problem.

[16:29:17] End of installation. End tag with timestamp.

Installation Unattended Installation

September 2005 7

INI File

The INI file contains the following sections and parameters:

[GENERAL] Section with general settings

INF_FILE Path and name of the inf file. All driver files have
to be in this directory.
If no directory is indicated, the path of the INI file is
used or (if missing) the path of the exe file.

PRINTER_DRIVER_MODEL_NAME Name of the printer driver to be installed.
This name is assigned by the printer driver
manufacturer and may be different from the
product label.

DRIVER_FILES_TARGET_FOLDER Target folder for the driver files.
You may also use environment variables to
specify the target folder. As usual, these must be
put between % characters.
The driver files to be copied must be listed in
section [DRIVER_FILES] (see below).
If this key is missing in the INI file or if no folder
was specified to the right of the equal sign (=), no
driver files will be copied.

Example:
%ProgramFiles%\Wincor Nixdorf\
HighPrint

DEVICE_HANDLER_TARGET_FOLDER Target folder for the device handler files.
You may also use environment variables to
specify the target folder. As usual, these must be
put between % characters.
The driver files to be copied must be listed in
section [DEVICE_HANDLER_FILES] (see below).
If this key is missing in the INI file or if no folder
was specified to the right of the equal sign (=), no
driver files will be copied.
Please select a folder that is part of the relevant
search pathes.

Example: %systemroot%\system32

Unattended Installation Installation

8 September 2005

PORT Port name: COM1:, ..., COM255:, LPT1:,
..., LPT4:, USB:

The colon (:) behind the port name is necessary.
For COM ports you have to set the transmission
parameters in a separate section named exactly
like the Port (see below). Please ensure that the
name of that section exactly matches the port
name (e.g. [COM1:].

[COM<x>:] Settings for serial interface

BAUD 2400, 4800, 9600, 19200

PARITY NONE, EVEN, ODD

DATABITS 7, 8

STOPBITS 1, 2

PROTOCOL DTR, XON/XOFF

[DRIVER_FILES] List of driver files

HPRW2K.INF
HPRW2K.CAT
HPR4915.GPD
HPR4905.GPD
WNHPR.DLL
WNHPRLM.DLL
WNHPRTXT.DLL
HPRDH.DLL

This is the list of all files that are necessary to run
one of the supported printers.

[DEVICE_HANDLER_FILES] List of device handler files

HPRDH.DLL The device handler consists only of one single file.

Installation Unattended Installation

September 2005 9

Example for USB Port

[GENERAL]
INF_FILE=F:\Driver\Hprw2k.inf
PRINTER_DRIVER_MODEL_NAME=Wincor Nixdorf HighPrint 4915
DRIVER_FILES_TARGET_FOLDER=%ProgramFiles%\Wincor Nixdorf\HighPrint
DEVICE_HANDLER_TARGET_FOLDER=%SystemRoot%\system32
PORT=USB:

[DRIVER_FILES]
HPRW2K.INF
HPRW2K.CAT
HPR4915.GPD
HPR4905.GPD
WNHPR.DLL
WNHPRLM.DLL
WNHPRTXT.DLL
HPRDH.DLL

[DEVICE_HANDLER_FILES]
HPRDH.DLL

Example for Serial Port COM2

[GENERAL]
INF_FILE=A:\Hprw2k.inf
PRINTER_DRIVER_MODEL_NAME=Wincor Nixdorf HighPrint 4915
DRIVER_FILES_TARGET_FOLDER=%ProgramFiles%\Wincor Nixdorf\HighPrint
DEVICE_HANDLER_TARGET_FOLDER=%SystemRoot%\system32
PORT=COM2:

[COM2:]
BAUD=19200
PARITY=EVEN
DATABITS=8
STOPBITS=1
PROTOCOL=DTR

[DRIVER_FILES]
HPRW2K.INF
HPRW2K.CAT
HPR4915.GPD
HPR4905.GPD
WNHPR.DLL
WNHPRLM.DLL
WNHPRTXT.DLL
HPRDH.DLL

[DEVICE_HANDLER_FILES]
HPRDH.DLL

Unattended Installation Installation

10 September 2005

Example for Parallel Port LPT1

[GENERAL]
INF_FILE=A:\Hprw2k.inf
PRINTER_DRIVER_MODEL_NAME=Wincor Nixdorf HighPrint 4915
DRIVER_FILES_TARGET_FOLDER=%ProgramFiles%\Wincor Nixdorf\HighPrint
DEVICE_HANDLER_TARGET_FOLDER=%SystemRoot%\system32
PORT=LPT1:

[DRIVER_FILES]
HPRW2K.INF
HPRW2K.CAT
HPR4915.GPD
HPR4905.GPD
WNHPR.DLL
WNHPRLM.DLL
WNHPRTXT.DLL
HPRDH.DLL

[DEVICE_HANDLER_FILES]
HPRDH.DLL

Installation Installation with Add Printer Wizard

September 2005 11

Installation with Add Printer Wizard

Wizards are a type of property sheet that provide a simple and powerful way to guide
users through complex procedures. For printer driver installations Windows provides the
Add Printer Wizard.

How the installation is to be started depends on the physical interface of the printer. For
HighPrint printers with a serial or parallel interface the driver is to be installed from the
Printers folder by starting the Add Printer Wizard explicitly. For printers with a USB
interface the Add Printer Wizard is started automatically when they are connected.

In any case follow the instructions of the installation wizard.

If you have a serial printer please ensure that the configuration of the serial port matches
the printer’s settings. It is recommended to use HW flow control and a high baud rate
(e.g. 19200).

Please note that this type of installation installs only the Windows printer driver. If the
device handler HPRDH.DLL is also required, it has to be copied separately. Please make
sure that you select a target directory where the applications will be able to find the DLL,
(e.g. %SystemRoot%\system32).

12 September 2005

September 2005 13

Deinstallation
This chapter describes a procedure you can use to remove the HighPrint Driver Software
from your system. It consists of two steps:

1. Remove all printer objects associated with the printer driver:

a) Open the Printers folder.

b) For all printer objects associated with the HighPrint driver right-click the printer
object and click Delete.

2. Remove the printer driver:

Windows XP

a) Open the Printers and Faxes folder.

b) On the File menu, click Server Properties.

c) On the Drivers tab, click the HighPrint driver, and then click Remove.

Windows 2000

Windows 2000 has no user interface feature to delete printer drivers. So you have to
manually remove the driver.

For this follow the steps described in article "Steps to Manually Remove and Reinstall
a Printer Driver" from the Microsoft Knowledge Base (article ID 135406).

14 September 2005

September 2005 15

Configuration
There are a few registry parameters which affect the behavior of the driver software. The
parameters reside in the registry root of the language monitor. It is:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print\Monitors\HighPrint Monitor

Parameter Type Description

Wait4PaperDialog REG_DWORD Specifies if the driver is to wait for paper at the
beginning of a GDI print job. The user is shown a
dialog window.
1 = Driver should wait (default)
0 = Driver should not wait
Note: This parameter must be set to 0 if the radio
button "Print directly to the printer" is active. Open the
printer folder and select the printer properties to see
this radio button.

ResourceDll REG_SZ Specifies path and file name of your own resource
DLL (see also chapter Localization of the User
Interface).

TraceLevel REG_DWORD Trace level for device handler HPRDH
(see chapter Trace and Logging for details)

LmTraceLevel REG_DWORD Trace level for language monitor
(see chapter Trace and Logging for details)

Please note that in general the spooler needs to be restarted for changes to take effect.

16 September 2005

September 2005 17

Driver Specifics
This chapter describes the options of the GDI printer driver which are specific to the
printer. For standard options and settings we refer you to the Windows documentation.

Paper Forms

Standard Forms

The following standard forms are supported by the driver:
A4 210 x 297 mm
A5 148 x 210 mm
Letter 8 1/2 x 11
Statement 5 1/2 x 8 ½
Executive 7 1/4 x 10 ½
B5 (JIS) 182 x 257 mm
Quarto 2 15 x 275 mm
Envelope #9 3 7/8 x 8 7/8 in
Envelope #10 4 1/8 x 9 1/2 in
Envelope #11 4 1/2 x 10 3/8 in
Envelope #12 4 3/4 x 11 in
Envelope #14 5 x 11 1/2 in
Envelope DL 110 x 220 mm
Envelope C5 162 x 229 mm
Envelope C6 114 x 162 mm
Envelope C65 114 x 229 mm
Envelope B5 176 x 250 mm
Envelope B6 176 x 125 mm
Envelope 110 x 230 mm
Envelope Monarch 3 7/8 x 7 1/2 in
6 3/4 Envelope 3 5/8 x 6 1/2 in
Japanese Postcard 100 x 148 mm
9 x 11 in 9 x 11 in
Envelope Invite 220 x 220 mm
A5 Extra 174 x 235 mm
B5 (ISO) Extra 201 x 276 mm

Paper Forms Driver Specifics

18 September 2005

Driver-Defined Forms

The following driver-defined forms are supported:

A5 Transverse 210 x 148 mm
A6 105 x 148 mm
A6 Transverse 148 x 105 mm
Eurocheque 3 2/6 x 5 9/10 in
EZUE 4 1/6 x 5 9/10 in

User-Defined Forms

In addition to using pre-defined formats, users may also define new formats. The
following table specifies the maximum and minimum sizes permitted by the printer:

Width: 7 - 24 cm (2.76 - 9.45 inches)
Height: 7 - 50 cm (2.76 - 19.68 inches)

In order to define your own formats open the Printers folder and select Server Properties
in the File menu.

Printable Area

Like with most matrix printers, form printing is subject to certain restrictions. Thus, the
HighPrint family of printers is unable to print on the margins. If print elements such as
texts or graphical elements are placed in these margin areas, the print system will mask
them out.

The non-printable margins are defined as follows:

Top margin 2.7 mm
Bottom margin 3.5 mm
Right margin 2.54 mm
Left margin 2.54 mm

Driver Specifics Paper Source

September 2005 19

Paper Source

Driver Options

The driver supports the following paper feed options:

 4905 4915

Manual Feed X X

Manual Feed User 1 x X

Manual Feed User 2 x X

Sheet Feeder – X

If one of the first three options is selected, users are expected to manually feed paper to
the printer. The difference between these three options consists in the handling of the
user LEDs, which are part of the printer operating panel. Print jobs for which “Manual
Feed” is selected cause none of the two LEDs to light up, while with
"Manual Feed User x" the appropriate user LED lights up.

As these three feed modes are available it is possible to identify the print jobs from
different workstations; therefore, the correct form can then be manually inserted into the
printer.

If the "Sheet Feeder" is selected, the paper is automatically pulled from the optional
feeder; no LED will light up. Note that a sheet feeder is available only for the 4915 and its
successor products.

Automatically Select

In addition to the above paper feed modes. Windows supports the option to select
“Automatically Select” for the paper hopper. In this case, the selection of the paper feed is
carried out based on the selected paper size and the link between paper paths and paper
formats made in the “Device Settings“ under “Forms to Tray Assignment“.

Note: If "Automatically Select" is selected for a print job, no dialog window will appear at
the beginning of the job, independent of the setting of configuration parameter
Wait4PaperDialog.

Fonts Driver Specifics

20 September 2005

Fonts
As the printer is graphics-enabled, it is in principle possible to print all Windows fonts. In addition, it
is possible to use the GDI to select and use the character sets defined in the printer. This may
accelerate printing in particular for printers with serial interfaces.

Some particular characteristics of the printer-specific fonts are described in the following:

Device Fonts

The following printer fonts are supported by the driver:

Roman 5cpi 10 pt
Roman 6cpi 10 pt
Roman 10cpi 10 pt
Roman 12cpi 10 pt
Roman 15cpi 7 pt
Roman 17cpi 10 pt
Roman 20cpi 10 pt
Roman PS 10 pt
Sans Serif 5cpi 10 pt
Sans Serif 6cpi 10 pt
Sans Serif 10cpi 10 pt
Sans Serif 12cpi 10 pt
Sans Serif 15cpi 7 pt
Sans Serif 17cpi 10 pt
Sans Serif 20cpi 10 pt
Sans Serif PS 10 pt
OCR-A 10cpi 10 pt
OCR-B 10cpi 10 pt

Note: Font OCR-A 10cpi is defined only in part; the consequence being that e.g. the
character 169 is printed as a question mark. See the HighPrint 4915 Programming Guide,
where the precise character assignment is described.

Driver Specifics Paper Quality

September 2005 21

Notes on Code Pages

Note the following concerning the use of the printer fonts in a GDI print job:

To achieve an optimal printing quality with the HighPrint 4915 make sure that the
character generator corresponding to the ANSI code page of the Windows system used
(e.g. 1252) has been loaded into the printer. See also the CD that is shipped with the
printer.

The printer usually uses a character generator defined on the basis of code page 437. If
this character generator is active in the printer, the printing of the characters higher than
code 127 is under Windows normally not printed as expected.

For example: Character 169 (copyright character © in Windows codepage 1252) is
printed as a semi graphic character with a loaded 437-type character generator.

These comments do not apply to characters 32 to 126, where all code pages are
identical.

Paper Quality

This parameter exists only for the HighPrint 4905. It is used to activate the so-called
passbook processing.

Two options are available: "Standard" and "Thicker than 0.15 mm".

Make sure to use always the second option for paper stock that is thicker than 0.15 mm
(e.g. passbooks and multi-copy forms).

All envelope forms cause the driver to automatically activate the passbook mode.

22 September 2005

September 2005 23

Device Handler Specifics
The device handler HPRDH.DLL provides an interface which enables applications to use
the full functionality of the printer. For details see the SDK.

In the following you will find a few remarks regarding the use of the device handler.

• Locally connected printers are supported

The device handler can only establish a connection to a locally connected printer. If you
need to access the printer device handler over the network or by more than one appli-
cation, you have to write a dedicated server process.

• Bi-directional support must be activated

In order to communicate with the printer over the device handler you should make sure
that bi-directional support is activated. See the Ports register card in the driver settings.
After the installation the bi-directional support is active by default.

• Synchronization with print queue

The process that has a connection to the printer by means of the device handler shares
the device with the spooler process. Access to the device is synchronized with the
spooler’s print queue by means of the functions PrtClaim() and PrtRelease(). Further
synchronization is not necessary.

24 September 2005

September 2005 25

Software Development Kit
A Software Development Kit is available for the development of an application that uses
the special device handler HPRDH.DLL. It includes

– HPRDH.H, a C-style header file, and

– HPRDH.LIB, the import library required for linking.

In addition, the source code of a running sample application is included.

All definitions and examples use the C programming language.

Software Interface Software Development Kit

26 September 2005

Software Interface

The following functions facilitate communication between the application and the
dynamic-link library HPRDH.DLL:

PrtOpen opens the printer
PrtClose closes the printer
PrtCIaim claims the printer for exclusive access
PrtRelease releases the printer
PrtWrite writes data to the printer
PrtRead reads information from printer

Please note that all functions follow the C calling convention.

To ensure that the device handler can also be used in programming environments that do
not support the C calling convention (such as Visual Basic), a compatible list of functions
following the Pascal calling convention is available. The names of these functions
correspond to those mentioned above, but with a leading p. For example: pPrtWrite,
pPrtRead, etc.

Note concerning PrtOpen: PrtOpen is strictly speaking not a function, but a macro, which
accesses with a defined UNICODE constant the function PrtOpenW, otherwise the
function PrtOpenA. Similarly, there are the functions pPrtOpenW and pPrtOpenA, a
function pPrtOpen does not exist.

See also the chapter Using the Device Handler from Visual Basic.

Software Development Kit PrtOpen

September 2005 27

PrtOpen

Synopsis

DWORD WINAPI PrtOpen (HANDLE *phPrt, LPTSTR lpPrinterName)

Description

The PrtOpen function retrieves a handle to the specified printer. The same printer cannot
be opened by another application at the same time.

Parameters

phPrt
Pointer to a variable that receives a handle to the open printer.

lpPrinterName
Pointer to a null-terminated string that specifies the name of the printer as it is known
in the system (for instance "Wincor Nixdorf HighPrint 4915").

Example

DWORD dwRet; // return value from function
HANDLE hPrt; // handle to our printer object
TCHAR tcPrinterName[] = TEXT("Wincor Nixdorf HighPrint 4915");
LPTSTR lpPrinterName = tcPrinterName;

// printer open call
dwRet = PrtOpen(&hPrt, lpPrinterName);

if (dwRet != PRT_NO_ERROR)
{
 ErrorProcedure(...);
}

PrtClose Software Development Kit

28 September 2005

PrtClose

Synopsis

DWORD WINAPI PrtClose (HANDLE *phPrt)

Description

The PrtClose function terminates the link to the printer. The handle is no longer valid.

Parameters

hPrt
Pointer to the printer handle returned by PrtOpen.

Example

DWORD dwRet; // return value from function

dwRet = PrtClose(&hPrt); // printer close call
if (dwRet != PRT_NO_ERROR)
{
 ErrorProcedure(...);
}

Software Development Kit PrtCIaim

September 2005 29

PrtCIaim

Synopsis

DWORD WINAPI PrtCIaim (HANDLE hPrt, DWORD dwTimeout)

Description

Claims the device for exclusive access. Claiming is necessary to synchronize the applica-
tion with print jobs from the spooler. As long as the device is claimed all subsequent print
jobs are queued but not processed.

Parameters

hPrt
Handle to the printer returned by PrtOpen.

dwTimeout
Maximum waiting time in milliseconds. The following defines have special meanings:

PRT_IMMEDIATELY return immediately
PRT_INFINITE wait until device is claimed

PrtCIaim Software Development Kit

30 September 2005

Example

DWORD dwRet; // return value from function
DWORD dwTimeout;

dwTimeout = 10000;

// claim the device for exclusive access
dwRet = PrtClaim(hPrt, dwTimeout);
if (dwRet != PRT_NO_ERROR)
{
 if (dwRet == WAIT_TIMEOUT)
 {
 // printer is currently busy;
 // handle timeout according to your needs

 ClaimTimeoutHandler(...);

 // perhaps you want to display a corresponding
 // user dialog with retry and abort option
 }
 else
 {
 ErrorProcedure(...);
 }
}

Software Development Kit PrtRelease

September 2005 31

PrtRelease

Synopsis

DWORD WINAPI PrtRelease (HANDLE hPrt)

Description

Releases the device so that the spooler’s print queue is no longer blocked.

Parameters

hPrt
Handle to the printer returned by PrtOpen.

Example

DWORD dwRet; // return value from function

dwRet = PrtRelease(hPrt); // release the device
if (dwRet != PRT_NO_ERROR)
{
 ErrorProcedure(...);
}

PrtWrite Software Development Kit

32 September 2005

PrtWrite

Synopsis

DWORD WINAPI PrtWrite (HANDLE hPrt, LPBYTE pbWriteBuffer,
 DWORD nNumberOfBytesToWrite,
 LPDWORD lpNumberOfBytesWritten)

Description

The PrtWrite function writes nNumberOfBytesToWrite bytes of the contents of
pbWriteBuffer to the printer. The function can be used to send data of any kind, normal
print data as well as printer control sequences.

Please note that PrtWrite provides no character code mapping. So the printout depends on the
loaded character generator.

If a control sequence requests a message from the printer then you will obtain the
response with the PrtRead function. For a description of the available control sequences
we refer you to the HighPrint Programming Guide.

Please note that the successful return does not indicate that all bytes are written to the
printer. In general the function does not return an error if the buffer is partly transferred.
Therefore you have to check the returned number of bytes written (see the example code
below).

Parameters

hPrt
Handle to the printer returned by PrtOpen.

pbWriteBuffer
Pointer to the buffer containing the data to be written to the printer

nNumberOfBytesToWrite
Specifies the number of bytes to write to the printer

lpNumberOfBytesWritten
Pointer to the variable that receives the number of bytes written

Example

BYTE bTextToWrite [] = "Text to be written to the printer";
DWORD dwNoOfBytesWritten;
DWORD nNumberOfBytesToWrite;
PBYTE pBuffer;
BOOL fAbort;

Software Development Kit PrtWrite

September 2005 33

fAbort = FALSE;
// initialize our write parameters
nNumberOfBytesToWrite = strlen(bTextToWrite);
pBuffer = bTextToWrite;

while (nNumberOfBytesToWrite > 0 && fAbort == FALSE)
{
 dwNoOfBytesWritten = 0;

 dwRet = PrtWrite(hPrt, pBuffer, nNumberOfBytesToWrite,
 &dwNoOfBytesWritten);

 if (dwRet == PRT_NO_ERROR)
 {
 AbortErrorProcedure(&fAbort, ...);
 }

 // all data written ?
 if (dwNoOfBytesWritten != nNumberOfBytesToWrite)
 {
 // check the printer’s message queue
 if (isPrinterOkay(...))
 {
 // no error condition, so carry on
 // with sending data to the printer.
 }
 else
 {
 // printer has a problem
 ErrorHandler(...);
 break;
 }
 }

 if (dwRet != PRT_NO_ERROR)
 {
 // PrtWrite returned an error; it may be reasonable to
 // implement a similar error handling as the spooler:
 // retry the write for a certain time; simultaneously
 // display a dialog box with error information
 // and a button for aborting the job.
 StartOrResumeErrorProcedure(&fAbort, dwRet, ...);
 }
 // update write parameters
 pBuffer += dwNoOfBytesWritten;
 nNumberOfBytesToWrite -= dwNoOfBytesWritten;
};

PrtRead Software Development Kit

34 September 2005

PrtRead

Synopsis

DWORD WINAPI PrtRead (HANDLE hPrt, DWORD dwTimeout, DWORD *pdwType,
 LPDWORD pdwParArray, LPDWORD pdwArraySize,
 LPBYTE pbReadData, LPDWORD pdwReadDataLen)

Description

Printer messages are either automatically generated by the printer or are replies on
application requests. The PrtRead function waits for messages from the printer and
returns them.

If no message is available after dwTimeout milliseconds, the function will return without
any information. Otherwise a message is returned in the parameters pdwType,
pdwParArray, and pbReadData.

Each message can be identified by the returned pdwType. The other parameters are set
dependent on the message. There are three types of messages.

• ESC [P1 ; … ; Pn <intermediate character><final character>[<STX><text><ETX>]

This is the formal syntax of most printer messages.

P1 … Pn are numeric values.
<STX><text><ETX> is an optional data string.

The numeric parameters P1;…;Pn after the control sequence introducer (CSI) ESC [
are returned to the application in the numeric array pdwParArray, and the <text>
between <STX> and <ETX> is returned in pbReadData for those messages which
contain <text> at all.

• ESC I D <module ids/data ids/electric journal function enabled>

This is the printer’s reply to the command ESC I D. In this case the contents after ESC
I D will be returned to the application in pbReadData. pdwParArray is empty.

Software Development Kit PrtRead

September 2005 35

Examples:

ESC I D $ M O D $ 0 4 0 1 2 5 0 1 0 5 B O O T P R O M .
P R M : $ M O D $ 0 3 1 2 1 9 0 2 0 8 4 9 1 5 _ S T D .
M O D ; $ M O D $ E L J

ESC I D $ M O D $ 0 4 0 1 2 5 0 1 0 5 B O O T P R O M .
P R M : $ M O D $ 0 3 1 2 1 9 0 2 0 8 4 9 1 5 _ S T D .
M O D ;

Note that the message always ends with ';' or ";MOD ELJ".

• ESC M O D, ESC m o d, ESC F N T, ESC BEL L

For these messages, pdwParArray and pbReadData are empty. The message can be
identified by the contents of pdwType.

There are two alternative ways of using PrtRead:

a) It can be used together with PrtWrite in one and the same transaction flow.

b) The other option is to use PrtRead in a separate read thread so that there are at least
two threads that communicate with the printer: One thread for writing and one thread
for reading and monitoring. In this case the required synchronization has to be done
by appropriate synchronization objects like events or mutexes.

It depends on your application design which alternative is to be used.

Parameters

hPrt
Handle to the printer returned by PrtOpen.

dwTimeout
Maximum number of milliseconds to wait for information. The following defines have a
special meaning:

PRT_IMMEDIATELY return immediately
PRT_INFINITE wait until information arrives

PrtRead Software Development Kit

36 September 2005

pdwType
The message identifier is returned here. The following identifiers are possible:

PRT_GLOBAL_STATUS The global printer status is returned.
PRT_SPECIAL_MESSAGE The special printer message is returned.
PRT_DOCUMENT_WIDTH The width of the document is returned from

the printer. This message is returned in
response to the corresponding printer
command.

PRT_MSR_MICR_READ_DATA The result of an MSR or MICR read com-
mand is returned.

PRT_MSR_WRITE_STATUS The printer’s response to an MSR write
command is returned.

PRT_CONTROL_POINT Control point is reached. The control point
number is returned in pdwParArray[0]. This
message is returned in response to the
control point command.

PRT_CONTROL_POINT_2 Control point 2 is reached. The control point
number is returned in pdwParArray[0]. This
message is returned in response to the
control point II command.

PRT_PRINTING_UNIT_PARAMETERS The printing unit parameters are returned.
This message is returned in response to the
corresponding printer command.

The following messages are sent by the bootstrap loader. See the HighPrint Manual
for how to activate the load function:

PRT_READY_TO_LOAD Printer is ready for download. This message
is returned in response to the ESC M O D
command.

PRT_READY_TO_LOAD_XE Printer is ready for download. This message
is returned in response to the ESC m o d
command (only 4915xe).

PRT_READY_TO_LOAD_FNT Printer is ready for downloading a font. This
message is returned in response to the ESC
F N T command.

PRT_MOD_ID The printer returned the identifiers of all
loadware modules. This message is
returned in response to the ESC I D
command.

PRT_BEL_L The printer is switched into the load mode.

Software Development Kit PrtRead

September 2005 37

pdwParArray
The numeric parameters P1;…;Pn after ESC [are returned in pdwParArray. The
number of returned parameters depends on the message. For details see the
HighPrint manual.

pdwArraySize
Here the application informs the DLL about the array size of pdwParArray (i.e. the
number of array elements). On return the number of numeric parameters written into
pdwParArray is returned. If pdwArraySize is 0 or less than the number of parameters
to return, the function returns with ERROR_MORE_DATA and pdwArraySize holds
the number of required array elements.

pbReadData
The contents of the information between <start of text> and <end of text> (if any) or
the contents after ESC I D is returned.

pdwReadDataLen
Here the application informs the DLL about the size of the read buffer pbReadData.
On return it holds the number of bytes returned in pbReadData. If pdwReadDataLen is
set to 0 by the caller, the function returns with the required buffer size and
ERROR_MORE_DATA.

Example

HANDLE hThread;
DWORD dwThreadId;

hThread = CreateThread(NULL, 0,
 (LPTHREAD_START_ROUTINE) AsyncReadThread,
 hPrt, 0, &dwThreadId);

DWORD AsyncReadThread(HANDLE hPrt)
{
 DWORD dwRet;
 DWORD dwParArray[10];
 DWORD dwArraySize;
 BYTE *pbReadData;
 DWORD dwReadDataLen;
 DWORD dwTimeout;
 DWORD dwType;
 BOOL fThreadRunning = TRUE;

 dwTimeout = 1000;

PrtRead Software Development Kit

38 September 2005

 while (fThreadRunning)
 {
 pbReadData = NULL;
 dwArraySize = 10;
 dwReadDataLen = 0;
 dwRet = PrtRead(hPrt, dwTimeout, &dwType, dwParArray,
 &dwArraySize, pbReadData, &dwReadDataLen);

 if (dwRet == ERROR_MORE_DATA)
 {
 // allocate the required memory
 if (dwReadDataLen > 0)
 {
 pbReadData = (BYTE *)
 malloc((size_t) dwReadDataLen);
 if (pbReadData == NULL)
 {
 dwReadDataLen = 0;
 }
 }
 // retry the read
 dwRet = PrtRead(hPrt, dwTimeout, &dwType, dwParArray,
 &dwArraySize, pbReadData,
 &dwReadDataLen);
 }
 if (dwRet == PRT_NO_ERROR)
 {
 // handle message
 switch (dwType)
 {
 ...
 }
 }
 else
 {
 // in case of unexpected errors we abort the thread
 if ((dwRet != ERROR_NO_MORE_ITEMS)
 && (dwRet != WAIT_TIMEOUT))
 {
 ErrorProcedure(hPrt, dwRet, ...);
 fThreadRunning = FALSE;
 }
 }

 if (pbReadData != NULL)
 {
 free(pbReadData);
 pbReadData = NULL;
 }
 }
} // end of AsyncReadThread

Software Development Kit Return Codes

September 2005 39

Return Codes

In general, the return values of the HPRDH functions are Win32 error codes. Therefore
we refer you to the Win32 SDK for error code descriptions. Special remarks on some
error codes can be found below.

Besides the Win32 error codes there are a few HPRDH-defined error codes which can be
identified in general by BIT29 (APPLICATION_ERROR_MASK) set.

Define Code Description

PRT_NO_ERROR 0 The operation completed successfully.
(See also PrtWrite for special remarks.)

PRT_OPEN_NOT_DONE 0x20000001 The printer has not been opened.

PRT_CLAIM_NOT_DONE 0x20000002 The printer has not been claimed.

PRT_COMMUNICATION_BROKEN 0x20000003 PrtWrite, PrtRead, and PrtClaim: It is
not possible to communicate with the
printer (e.g. USB cable disconnected).
If the code is returned by PrtRead or
PrtWrite then call PrtRelease. Try to
establish a new session by calling
PrtClaim again.

ERROR_INVALID_HANDLE 6 The handle is invalid. If PrtClaim
returns this code it may indicate that the
spooler has been stopped. In this case
try to reopen the printer again.

ERROR_NOT_ENOUGH_MEMORY 8 Not enough memory is available to
process this command.

ERROR_NOT_READY 21 The printer is not ready yet or not ready
any more. Possible reasons:

The print spooler closed the corre-
sponding port because the port has
been changed between PrtOpen and
PrtClaim.

The desired control points couldn't be
reached, because the printer is not
online any more.

ERROR_BAD_LENGTH 24 PrtOpen: The printer name contains
more than 256 characters.

ERROR_OUT_OF_PAPER 28 PrtWrite: The printer is out of paper
(USB printer only, ERROR_TIMEOUT
otherwise)

ERROR_MORE_DATA 234 PrtRead: More data is available.

Return Codes Software Development Kit

40 September 2005

Define Code Description

WAIT_TIMEOUT 258 The operation timed out. (PrtRead,
PrtClaim and PrtWrite)

ERROR_NO_MORE_ITEMS 259 PrtRead is called with dwTimeout =
PRT_IMMEDIATELY and no informa-
tion is available.

ERROR_TIMEOUT 1460 PrtWrite: The timeout period expired.

RPC_S_SERVER_UNAVAILABLE 1722 The print spooler may have stopped.

RPC_S_CALL_FAILED 1726 The print spooler may have stopped.

RPC_S_CALL_FAILED_DNE 1727 The print spooler may have stopped.

ERROR_INVALID_PRINTER_NAME 1801 PrtOpen: The printer name is invalid.

Software Development Kit Using the Device Handler from Visual Basic

September 2005 41

Using the Device Handler from Visual Basic

The following is a small code example written in Basic, which is to illustrate the use of the
device handler from Basic.

Private Declare Function pPrtOpenW Lib "HPRDH" (_
 ByRef Handle As Long, _
 ByVal ptrPrinterName As Long) As Long

Private Declare Function pPrtClose Lib "HPRDH" (_
 ByRef Handle As Long) As Long

Private Declare Function pPrtClaim Lib "HPRDH" (_
 ByVal Handle As Long, _
 ByVal Timeout As Long) As Long

Private Declare Function pPrtRelease Lib "HPRDH" (_
 ByVal Handle As Long) As Long

Private Declare Function pPrtWrite Lib "HPRDH" (_
 ByVal Handle As Long, _
 ByVal ptrWriteBuffer As Long, _
 ByVal NumberOfBytesToWrite As Long, _
 ByRef NumberOfBytesWritten As Long) As Long

Private Declare Function pPrtRead Lib "HPRDH" (_
 ByVal Handle As Long, _
 ByVal Timeout As Long, _
 ByRef pdwType As Long, _
 ByVal ptrParArray As Long, _
 ByRef AarraySize As Long, _
 ByVal ptrReadData As Long, _
 ByRef ReadDataLen As Long) As Long

Dim pHandle As Long

rem OPEN AND CLAIM

Private Sub OPEN_PRT_Click()
 Dim prnname As String
 Dim ptrname As Long
 prnname = "Wincor Nixdorf HighPrint 4915"
 ptrname = StrPtr(prnname)

 If pPrtOpenW(pHandle, ptrname) > 0 Then MsgBox ("OPEN FAIL")
 If pPrtClaim(pHandle, 5000) > 0 Then MsgBox ("CLAIM FAIL")
End Sub

rem CLOSE AND RELEASE

Private Sub CLOSE_PRT_Click()
 If pPrtRelease(pHandle) > 0 Then MsgBox ("RELEASE FAIL")
 If pPrtClose(pHandle) > 0 Then MsgBox ("CLOSE FAIL")
End Sub

Using the Device Handler from Visual Basic Software Development Kit

42 September 2005

rem WRITE DATA

Function WriteData(sbuffer As String)
 Dim buffer() As Byte
 Dim StrBuffer As Long
 Dim NumbOffWrite As Long
 Dim StrLength As Long
 buffer() = StrConv(sbuffer, vbFromUnicode)
 NumbOffWrite = 0
 StrBuffer = StrPtr(buffer())
 StrLength = Len(sbuffer)
 Status = pPrtWrite(pHandle, StrBuffer, StrLength, NumbOffWrite)
End Function

rem SAMPLE EJECT COMMAND

Private Sub Eject_Click()
 WriteData (Chr$(12))
End Sub

rem READ DATA

Function ReadData()
 Dim ptype As Long
 Dim daten(30) As Long
 Dim arraysize As Long
 Dim ReadDataLen As Long
 Dim pararrysize As Long
 Dim readdatap As Long
 Dim dataf As String
 Dim pararray As Long

 Erase daten()

 dataf = Space(512)
 arraysize = 30

 pararray = VarPtr(daten(0))
 readdatap = StrPtr(dataf)

 Do
 DoEvents
 ReadDataLen = 512
 arraysize = 30
 Status = pPrtRead(pHandle, Timeout, ptype, pararray, _
 arraysize, readdatap, ReadDataLen)
 Loop
End Function

Software Development Kit Localization of the User Interface

September 2005 43

Localization of the User Interface

In general the HighPrint Driver Software has no own user interface. The only exception is
the dialog box, which can appear at the beginning of a GDI print job.

The dialog text consists of “Please enter paper <new line>or press 'Cancel' to abort the
print job” and “Cancel”. The texts are provided by the resource DLL wnhprtxt.dll and are
available in English and German.

If you want to adjust the text to other languages you have to be familiar with the concept
of Win32 resource files. For details we refer you to the Microsoft Platform SDK.

The following list gives a rough overview of the required steps in the process of localizing
the user interface:

1. Translate the text into the desired language and extend/change the resource file
wnhprtxt.rc

2. Compile that file: rc -r -fo wnhprtxt.res wnhprtxt.rc

3. Link the DLL: link -dll -machine:ix86 -noentry -out:wnhprtxt.dll wnhprtxt.res

4. Copy your extended or changed resource DLL to the system.

5. Enter the file name of your resource DLL including the full qualified path to the registry
parameter ResourceDll (see chapter Configuration).

44 September 2005

September 2005 45

Sample Application
The SDK includes a code sample that demonstrates the usage of the API provided by
HPRDH.DLL. Especially it shows how to use PrtRead() asynchronously in a second
thread.

The transaction flow is as follows:

– The demo application asks for the printer name (e.g. “Wincor Nixdorf HighPrint
4915") to be able to open the printer. After open with PrtOpen and claim (PrtClaim),
the command “Eject Paper” is sent to the printer and a control point is set using the
PrtWrite function.

– The sample application waits until the control point is reached (using the Win32
functions CreateEvent, WaitForSingleObject and SetEvent) and the desired
information is returned from the printer.

– Now the user is requested to enter paper. The application waits for paper to be
inserted. For this it waits for the global printer status "PAPER".

– If the user presses the cancel button instead of entering paper, the application finishes
calling PrtRelease and PrtClose.

– If paper is inserted, some lines and a form feed (FF) are written to the printer.

– After all writes are done, the application waits until the state “NO PAPER” occurs.
Then the user is asked to load paper again to be able to print the next page. The
application waits for the “PAPER” state before the next page is written.

– At the end of the application the printer is asked for the printing unit parameters.
These parameters are shown in a window.

Please note that the sample application is written with a reasonable error handling.

46 September 2005

September 2005 47

Logging and Trace
Errors and warnings are written into the Windows application event log.

Additionally the driver software system provides trace functionality which can be activated
by the following parameters in the registry. The parameters reside in the registry root of
the language monitor. That is:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print\Monitors\HighPrint

Parameter Type Description

TraceLevel REG_DWORD Trace level for device handler HPRDH

LmTraceLevel REG_DWORD Trace level for language monitor

 0 = No trace active
1 = Errors and warnings
2 = Errors, warnings and low information level info
3 = Errors, warnings and medium information level
4 = Errors, warnings and high information level
5 = Level 4 extended by a complete data trace in hex
format

Please note that a debugger or debug viewer is necessary to see the trace output.

48 September 2005

September 2005 49

Abbreviations

API Application Programming Interface

CD Compact Disk

cpi characters per inch

CSI Command Sequence Introducer

DLL Dynamic-Link Library

dpi dots per inch

e.g. exempli gratia (for example)

GDI Graphical Device Interface

HW hardware

i.e. id est (that is)

LED Light Emitting Diode

MICR Magnetic Ink Character Recognition

MSR Magnetic Stripe Reader

OCR Optical Character Recognition

PnP Plug and Play

pt point (a unit used to measure the size of a character font)

SDK Software Development Kit

USB Universal Serial Bus

50 September 2005

September 2005 51

Literature
This manual is a part of the documentation series for the HighPrint printers.

The following HighPrint manuals are available:

• Programming Guide

• Paper Specification

• Operating Manual

52 September 2005

 September 2005

Notes

Published by
Wincor Nixdorf International GmbH
33094 Paderborn
Germany

Printed in Germany
Order No.: September 2005

	Introduction
	Installation
	Installation with HighPrint 4915xe CD
	Unattended Installation
	Steps of the Unattended Setup
	Exit Code
	Log File
	INI File

	Installation with Add Printer Wizard

	Deinstallation
	Configuration
	Driver Specifics
	Paper Forms
	Standard Forms
	Driver-Defined Forms
	User-Defined Forms
	Printable Area

	Paper Source
	Driver Options
	Automatically Select

	Fonts
	Device Fonts
	Notes on Code Pages

	Paper Quality

	Device Handler Specifics
	Software Development Kit
	Software Interface
	PrtOpen
	PrtClose
	PrtCIaim
	PrtRelease
	PrtWrite
	PrtRead
	Return Codes
	Using the Device Handler from Visual Basic
	Localization of the User Interface

	Sample Application
	Logging and Trace
	Abbreviations
	Literature

